Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(8): e110070, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35285528

RESUMO

Transposable elements (TEs) constitute a major threat to genome stability and are therefore typically silenced by epigenetic mechanisms. In response, some TEs have evolved counteracting systems to suppress epigenetic silencing. In the model plant Arabidopsis thaliana, two such anti-silencing systems have been identified and found to be mediated by the VANC DNA-binding proteins encoded by VANDAL transposons. Here, we show that anti-silencing systems have rapidly diversified since their origin in eudicots by gaining and losing VANC-containing domains, such as DUF1985, DUF287, and Ulp1, as well as target sequence motifs. We further demonstrate that these motifs determine anti-silencing specificity by sequence, density, and helical periodicity. Moreover, such rapid diversification yielded at least 10 distinct VANC-induced anti-silencing systems in Arabidopsis. Strikingly, anti-silencing of non-autonomous VANDALs, which can act as reservoirs of 24-nt small RNAs, is critical to prevent the demise of cognate autonomous TEs and to ensure their propagation. Our findings illustrate how complex co-evolutionary dynamics between TEs and host suppression pathways have shaped the emergence of new epigenetic control mechanisms.


Assuntos
Arabidopsis , Elementos de DNA Transponíveis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genoma de Planta , RNA Interferente Pequeno/genética
2.
Methods Mol Biol ; 2250: 141-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33900601

RESUMO

Transposable elements (TEs) are repetitive DNA sequences that have the ability to mobilize in the genome and create major effect mutations. Despite the importance of transposition as a source of genetic novelty, we still know little about the rate, landscape, and consequences of TE mobilization. This situation stems in large part from the repetitive nature of TEs, which complicates their analysis. Moreover, TE mobilization is typically rare and therefore new TE (i.e., non-reference) insertions tend to be missed in small-scale population studies. This chapter describes a TE-sequence capture approach designed to identify transposition events for most of the TE families that are potentially active in Arabidopsis thaliana. We show that our TE-sequence capture design provides an efficient means to detect with high sensitivity and specificity insertions that are present at a frequency as low as 1/1000 within a DNA sample.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis , Análise de Sequência de DNA/métodos , DNA de Plantas/análise , Evolução Molecular , Mutagênese Insercional , Seleção Genética
3.
Nat Commun ; 10(1): 3421, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366887

RESUMO

Transposable elements (TEs) are mobile parasitic sequences that have been repeatedly coopted during evolution to generate new functions and rewire gene regulatory networks. Yet, the contribution of active TEs to the creation of heritable mutations remains unknown. Using TE accumulation lines in Arabidopsis thaliana we show that once initiated, transposition produces an exponential spread of TE copies, which rapidly leads to high mutation rates. Most insertions occur near or within genes and targets differ between TE families. Furthermore, we uncover an essential role of the histone variant H2A.Z in the preferential integration of Ty1/copia retrotransposons within environmentally responsive genes and away from essential genes. We also show that epigenetic silencing of new Ty1/copia copies can affect their impact on major fitness-related traits, including flowering time. Our findings demonstrate that TEs are potent episodic (epi)mutagens that, thanks to marked chromatin tropisms, limit the mutation load and increase the potential for rapid adaptation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Histonas/genética , Retroelementos/genética , Adaptação Fisiológica/genética , Genoma de Planta/genética
4.
Sci Rep ; 8(1): 7905, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784958

RESUMO

PRC2 is a major regulator of gene expression in eukaryotes. It catalyzes the repressive chromatin mark H3K27me3, which leads to very low expression of target genes. NRT2.1, which encodes a key root nitrate transporter in Arabidopsis, is targeted by H3K27me3, but the function of PRC2 on NRT2.1 remains unclear. Here, we demonstrate that PRC2 directly targets and down-regulates NRT2.1, but in a context of very high transcription, in nutritional conditions where this gene is one of the most highly expressed genes in the transcriptome. Indeed, the mutation of CLF, which encodes a PRC2 subunit, leads to a loss of H3K27me3 at NRT2.1 and results, exclusively under permissive conditions for NRT2.1, in a further increase in NRT2.1 expression, and specifically in tissues where NRT2.1 is normally expressed. Therefore, our data indicates that PRC2 tempers the hyperactivity of NRT2.1 in a context of very strong transcription. This reveals an original function of PRC2 in the control of the expression of a highly expressed gene in Arabidopsis.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cromatina/química , Cromatina/genética , Histonas/química , Histonas/genética , Complexo Repressor Polycomb 2 , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transcriptoma
5.
Methods Mol Biol ; 1675: 111-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052189

RESUMO

Progression of a cell along a differentiation path is characterized by changes in gene expression profiles. Alterations of these transcriptional programs result from cell type-specific transcription factors that act in a dynamic chromatin environment. Understanding the precise contribution of these molecular factors during the differentiation process requires accessing specific cell types within a developing organ. This chapter describes a streamlined and alternative version of INTACT, a method enabling the isolation of specific cell populations by affinity-purification of tagged nuclei and the subsequent analysis of gene expression, transcription factor binding profiles, as well as chromatin state at a genome-wide scale. In particular, modifications of the nuclei isolation, capture, and purification procedures are proposed that improve time scale, yield, and purity. In addition, the combination of different tags enables the analysis of distinct cell populations from a single transgenic line and the subtractive purification of subpopulations of cells, including those for which no specific promoter is available. Finally, we describe a chromatin immunoprecipitation protocol that has been successfully used to profile histone modifications and other chromatin-associated proteins such as RNA Polymerase II in different cell populations of the Arabidopsis root, including the quiescent center of the stem cell niche.


Assuntos
Cromatina/genética , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Separação Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , Especificidade de Órgãos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ligação Proteica
6.
Development ; 144(7): 1187-1200, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28174250

RESUMO

To understand how the identity of an organ can be switched, we studied the transformation of lateral root primordia (LRP) into shoot meristems in Arabidopsis root segments. In this system, the cytokinin-induced conversion does not involve the formation of callus-like structures. Detailed analysis showed that the conversion sequence starts with a mitotic pause and is concomitant with the differential expression of regulators of root and shoot development. The conversion requires the presence of apical stem cells, and only LRP at stages VI or VII can be switched. It is engaged as soon as cell divisions resume because their position and orientation differ in the converting organ compared with the undisturbed emerging LRP. By alternating auxin and cytokinin treatments, we showed that the root and shoot organogenetic programs are remarkably plastic, as the status of the same plant stem cell niche can be reversed repeatedly within a set developmental window. Thus, the networks at play in the meristem of a root can morph in the span of a couple of cell division cycles into those of a shoot, and back, through transdifferentiation.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Meristema/citologia , Nicho de Células-Tronco , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Divisão Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Citocininas/farmacologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Nicho de Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
7.
Plant J ; 85(2): 320-333, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26662936

RESUMO

Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genômica/métodos , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas
8.
Science ; 343(6175): 1145-8, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24505129

RESUMO

Quantifying the impact of heritable epigenetic variation on complex traits is an emerging challenge in population genetics. Here, we analyze a population of isogenic Arabidopsis lines that segregate experimentally induced DNA methylation changes at hundreds of regions across the genome. We demonstrate that several of these differentially methylated regions (DMRs) act as bona fide epigenetic quantitative trait loci (QTL(epi)), accounting for 60 to 90% of the heritability for two complex traits, flowering time and primary root length. These QTL(epi) are reproducible and can be subjected to artificial selection. Many of the experimentally induced DMRs are also variable in natural populations of this species and may thus provide an epigenetic basis for Darwinian evolution independently of DNA sequence changes.


Assuntos
Arabidopsis/genética , Metilação de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Locos de Características Quantitativas , Mapeamento Cromossômico , Seleção Genética
9.
EMBO J ; 30(10): 1928-38, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21487388

RESUMO

Post-translational modification of histones and DNA methylation are important components of chromatin-level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin-based regulatory mechanisms in plants.


Assuntos
Arabidopsis/fisiologia , Cromatina/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromossomos/metabolismo , Metilação de DNA , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...